top of page

Bio health

Explore NeurEco's Impact in Medical Innovations.
NeurEco reduces development time of your medical applications:

  • Reducing the time needed to collect the data (less data)

  • Reducing the development time of the neural model

NeurEco enables more accurate predictions and provides enhanced explanations for those predictions.

shutterstock_2135203189_edited_edited.jpg

OUR SUCCESS STORIES

Bio_sante.png

Patient specific modeling
To support decision making

Puces_Pleines_Adagos.png
Puces_Pleines_Adagos.png
Puces_Pleines_Adagos.png

SPINNER European Project

Collaboration with ANSYS and AESCULAP

Make a real time copy of a computer intensive simulation tool

Image6.png

Real-time patient
specific simulation

Computer intensive simulation

Real time copy

Image8.jpg
Ancre 4
Car production

Genomic classification

Non usual test case: the number of samples is almost 100 times smaller than the number of features (input variables)

Samples: 3450 = 2760 (learning data) + 690 (testing)

Features (embeddings): 300 000

Using the default setting of NeurEco

A Genetic example (classification)

Image10.png
Image11.png
Puces_Pleines_Adagos.png
Puces_Pleines_Adagos.png
Puces_Pleines_Adagos.png
Puces_Pleines_Adagos.png
Puces_Pleines_Adagos.png

Genome application

Confusion matrices

Image7.jpg
Image6.jpg

Confusion matrices obtained by Bengio  [1] (left) and by NeurEco (right)

Ancre 3

Classification error

Puces_Pleines_Adagos.png
Puces_Pleines_Adagos.png
Puces_Pleines_Adagos.png

Bengio & al. used several methods to solve the problem. The best classification error is 7.4 %.

The classification error of our method is 4.38 %

We reduced the error by 40 %

Bengio article: https://arxiv.org/pdf/1611.09340

Ancre 1
bottom of page